Nilpotence and Torsion in the Cohomology of the Steenrod Algebra
نویسندگان
چکیده
In this paper we prove the existence of global nilpotence and global torsion bounds for the cohomology of any finite Hopf subalgebra of the Steenrod algebra for the prime 2. An explicit formula for computing such bounds is then obtained. This is used to compute bounds for H* (sán ) fer n < 6 .
منابع مشابه
A note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملInvariant elements in the dual Steenrod algebra
In this paper, we investigate the invariant elements of the dual mod $p$ Steenrod subalgebra ${mathcal{A}_p}^*$ under the conjugation map $chi$ and give bounds on the dimensions of $(chi-1)({mathcal{A}_p}^*)_d$, where $({mathcal{A}_p}^*)_d$ is the dimension of ${mathcal{A}_p}^*$ in degree $d$.
متن کاملDeconstructing Hopf Spaces
We characterize Hopf spaces with finitely generated cohomology as algebra over the Steenrod algebra. We “deconstruct” the original space into an Hspace Y with finite mod p cohomology and a finite number of p-torsion EilenbergMac Lane spaces. One reconstructs X from Y by taking extensions by principal H-fibrations. We give a precise description of homotopy commutative H-spaces in this setting an...
متن کاملSome Quotient Hopf Algebras of the Dual Steenrod Algebra
Fix a prime p, and let A be the polynomial part of the dual Steenrod algebra. The Frobenius map on A induces the Steenrod operation P̃0 on cohomology, and in this paper, we investigate this operation. We point out that if p = 2, then for any element in the cohomology of A, if one applies P̃0 enough times, the resulting element is nilpotent. We conjecture that the same is true at odd primes, and t...
متن کاملOn the X basis in the Steenrod algebra
Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra, where $p$ is an odd prime, and let $mathcal{A}$ be the subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers. We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010